Economic Models for Integrated Project Teams

Daniel M.M. Arons, AIA, LEEDTM Accredited Tsoi/Kobus & Associates

Erik Mollo-Christensen, AIA Tsoi/Kobus & Associates

The dots of evidence

- Lower cost premiums
 - 0.66% to 2.11% for Basic through Gold LEED
 - 6.5% for Demonstration/Platinum buildings
 - Premium declines with collective experience
- Clear energy benefits
 - 18% to 37% reductions from code
 - Additional benefits with renewable energy sources
- Increased "soft" benefits
 - Reduced external costs -- atmospheric, ground and water pollution
 - Economic and social impacts -- up and downstream
- Greater human health and productivity

"Soft" Benefits Data

- Academic test scores
- Retail sales
- Retention
- Productivity

Indirect accrual of benefits

- Developer, tenant relationship
- Owner, user relationship
- Separate accounting for capital and O&M budgets

Challenge for green laboratory advocates

- Develop strategies for understanding common ground between building owners/developers and users/tenants
 - Valuation of sustainable design features
 - Requires financial linkages

Design Drivers -- Common Ground

Conventional Strategies for Success

• Faster Reduce time to occupancy

Cheaper Reduce construction cost

Bigger Increase leasable/usable space

Better Increase capacity (enhance marketability)

Green Strategies for Success

Faster Reduce time to occupancy

(permitting advantage)

• Cheaper Reduce operational & construction costs

Bigger Increase effectiveness of space

Better Provide strategic flexibility

(enhance marketability)

Case Studies -- Financial Model Components

ROI, NPV

·

Clark University

- Institutional owner
- Fixed budget and schedule
- Key objectives:
 - Recruitment
 - Retention
 - Operational costs
 - Fundraising

Clark Financial Model

Tsoi/Kobus & Associates, Inc.

Cambridge, MA

October 21, 2003

Clark University

Medical Research Buildings

- "Speculative" development
- First costs minimized
- Risk averse
- Tenants to be determined
- FAR envelope at limit

Medical Research Buildings – Base Model

Option I – Parking

Option 2 – Reduced Energy

Option 3 – Increased Lease

Option 3A - Increased Lease/Base Staff

Option 3B – Increased Lease/Staff

Summary of Studies

	Base	V (\$M) proved	Delta	NPV/SF (\$) Base Improved			Delta
Clark							
Reduce construction (\$0.90/sf) Increase Fee (+6% of fees) Reduce utility costs (-45%)	\$ 7.64	\$ 8.19	\$ 0.55	\$ 109.14	\$	117.01	\$ 7.87
Medical Research Building	\$ 72.53						
Option 1 Reduce Parking Assume reduction of 10% base is 4.5 spaces per 1000 sf underground parking at \$50k/space	\$ 72.53	\$ 73.30	\$ 0.77	\$ 145.06	\$	146.60	\$ 1.54
Option 2 Reduce Utility Costs Add 0.3% to construction Add 1% to engineering fees Save 30% in utility costs	\$ 72.53	\$ 75.16	\$ 2.63	\$ 145.06	\$	150.32	\$ 5.26
Option 3 Increase Lease Rate Increase lease by 5% (\$2.5 on \$50/SF) Increase productivity by 1% of Employee salary and benefits	\$ 72.53	\$ 77.88	\$ 5.35	\$ 145.06	\$	155.76	\$ 10.70
Option 3 Benefit to Tenant	\$ (97.44)	\$ (96.37)	\$ 1.07	\$ (194.88)	\$	(192.74)	\$ 2.14

Tsoi/Kobus & Associates, Inc.

Labs 21 October 21, 2003

The Green Market Lab Niche

- Employees at \$100,000 average cost (salary + benefits)
- Return 5% on productivity, recruiting retention and reduced absenteeism combined
- Add environmental stewardship to annual marketing appeal
- Benefits accruing to tenant
 - \$5,000/employee annually
 - Worth \$14.29/sf annually
- Boston Market break even
 - 1% productivity = \$2.86/sf annually
 - 5% lease hike = \$2.87/sf

Additional Strategies to Consider

- Streamline permitting -- reduce time to beneficial occupancy
- Increase FAR
- Provide performance based services -- s.a. Esco
- Build less, but higher quality/value
- Reduce insurance rates (cost/employee and cost/employer)

Bringing Green Design to Market

- Financial Model (Life Cycle Cost / Assessment)
- Address Key Variables
- Leverage Strategies